pwtools.atomic_data.masses¶
- pwtools.atomic_data.masses = array([ -1. , 1.00794 , 4.002602 , 6.941 , 9.012182 , 10.811 , 12.0107 , 14.0067 , 15.9994 , 18.9984032 , 20.1797 , 22.98976928, 24.305 , 26.9815386 , 28.0855 , 30.973762 , 32.065 , 35.453 , 39.948 , 39.0983 , 40.078 , 44.955912 , 47.867 , 50.9415 , 51.9961 , 54.938045 , 55.845 , 58.933195 , 58.6934 , 63.546 , 65.38 , 69.723 , 72.64 , 74.9216 , 78.96 , 79.904 , 83.798 , 85.4678 , 87.62 , 88.90585 , 91.224 , 92.90638 , 95.96 , 98. , 101.07 , 102.9055 , 106.42 , 107.8682 , 112.411 , 114.818 , 118.71 , 121.76 , 127.6 , 126.90447 , 131.293 , 132.9054519 , 137.327 , 138.90547 , 140.116 , 140.90765 , 144.242 , 145. , 150.36 , 151.964 , 157.25 , 158.92535 , 162.5 , 164.93032 , 167.259 , 168.93421 , 173.054 , 174.9668 , 178.49 , 180.94788 , 183.84 , 186.207 , 190.23 , 192.217 , 195.084 , 196.966569 , 200.59 , 204.3833 , 207.2 , 208.9804 , 209. , 210. , 222. , 223. , 226. , 227. , 232.03806 , 231.03588 , 238.02891 , 237. , 244. , 243. , 247. , 247. , 251. , 252. , 257. , 258. , 259. , 262. , 267. , 268. , 271. , 272. , 270. , 276. , 281. , 280. , 285. , 284. , 289. , 288. , 293. , 294. ])¶
- ndarray(shape, dtype=float, buffer=None, offset=0,
strides=None, order=None)
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The parameters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.
- Parameters:
below) ((for the __new__ method; see Notes)
shape (tuple of ints) – Shape of created array.
dtype (data-type, optional) – Any object that can be interpreted as a numpy data type.
buffer (object exposing buffer interface, optional) – Used to fill the array with data.
offset (int, optional) – Offset of array data in buffer.
strides (tuple of ints, optional) – Strides of data in memory.
order ({'C', 'F'}, optional) – Row-major (C-style) or column-major (Fortran-style) order.
- pwtools.atomic_data.T¶
Transpose of the array.
- Type:
ndarray
- pwtools.atomic_data.data¶
The array’s elements, in memory.
- Type:
buffer
- pwtools.atomic_data.dtype¶
Describes the format of the elements in the array.
- Type:
dtype object
- pwtools.atomic_data.flags¶
Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’, ‘OWNDATA’, ‘WRITEABLE’, etc.
- Type:
dict
- pwtools.atomic_data.flat¶
Flattened version of the array as an iterator. The iterator allows assignments, e.g.,
x.flat = 3(See ndarray.flat for assignment examples; TODO).- Type:
numpy.flatiter object
- pwtools.atomic_data.imag¶
Imaginary part of the array.
- Type:
ndarray
- pwtools.atomic_data.real¶
Real part of the array.
- Type:
ndarray
- pwtools.atomic_data.size¶
Number of elements in the array.
- Type:
int
- pwtools.atomic_data.itemsize¶
The memory use of each array element in bytes.
- Type:
int
- pwtools.atomic_data.nbytes¶
The total number of bytes required to store the array data, i.e.,
itemsize * size.- Type:
int
- pwtools.atomic_data.ndim¶
The array’s number of dimensions.
- Type:
int
- pwtools.atomic_data.shape¶
Shape of the array.
- Type:
tuple of ints
- pwtools.atomic_data.strides¶
The step-size required to move from one element to the next in memory. For example, a contiguous
(3, 4)array of typeint16in C-order has strides(8, 2). This implies that to move from element to element in memory requires jumps of 2 bytes. To move from row-to-row, one needs to jump 8 bytes at a time (2 * 4).- Type:
tuple of ints
- pwtools.atomic_data.ctypes¶
Class containing properties of the array needed for interaction with ctypes.
- Type:
ctypes object
- pwtools.atomic_data.base¶
If the array is a view into another array, that array is its base (unless that array is also a view). The base array is where the array data is actually stored.
- Type:
ndarray
See also
arrayConstruct an array.
zerosCreate an array, each element of which is zero.
emptyCreate an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).
dtypeCreate a data-type.
numpy.typing.NDArrayAn ndarray alias generic w.r.t. its dtype.type <numpy.dtype.type>.
Notes
There are two modes of creating an array using
__new__:If buffer is None, then only shape, dtype, and order are used.
If buffer is an object exposing the buffer interface, then all keywords are interpreted.
No
__init__method is needed because the array is fully initialized after the__new__method.Examples
These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways of constructing an ndarray.
First mode, buffer is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F') array([[0.0e+000, 0.0e+000], # random [ nan, 2.5e-323]])
Second mode:
>>> np.ndarray((2,), buffer=np.array([1,2,3]), ... offset=np.int_().itemsize, ... dtype=int) # offset = 1*itemsize, i.e. skip first element array([2, 3])