pwtools.atomic_data.covalent_radii¶
- pwtools.atomic_data.covalent_radii = array([-1. , 0.31, 0.28, 1.28, 0.96, 0.84, 0.76, 0.71, 0.66, 0.57, 0.58, 1.66, 1.41, 1.21, 1.11, 1.07, 1.05, 1.02, 1.06, 2.03, 1.76, 1.7 , 1.6 , 1.53, 1.39, 1.39, 1.32, 1.26, 1.24, 1.32, 1.22, 1.22, 1.2 , 1.19, 1.2 , 1.2 , 1.16, 2.2 , 1.95, 1.9 , 1.75, 1.64, 1.54, 1.47, 1.46, 1.42, 1.39, 1.45, 1.44, 1.42, 1.39, 1.39, 1.38, 1.39, 1.4 , 2.44, 2.15, 2.07, 2.04, 2.03, 2.01, 1.99, 1.98, 1.98, 1.96, 1.94, 1.92, 1.92, 1.89, 1.9 , 1.87, 1.87, 1.75, 1.7 , 1.62, 1.51, 1.44, 1.41, 1.36, 1.36, 1.32, 1.45, 1.46, 1.48, 1.4 , 1.5 , 1.5 , 2.6 , 2.21, 2.15, 2.06, 2. , 1.96, 1.9 , 1.87, 1.8 , 1.69, -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. , -1. ])¶
- ndarray(shape, dtype=float, buffer=None, offset=0,
strides=None, order=None)
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The parameters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.
- Parameters:
below) ((for the __new__ method; see Notes)
shape (tuple of ints) – Shape of created array.
dtype (data-type, optional) – Any object that can be interpreted as a numpy data type.
buffer (object exposing buffer interface, optional) – Used to fill the array with data.
offset (int, optional) – Offset of array data in buffer.
strides (tuple of ints, optional) – Strides of data in memory.
order ({'C', 'F'}, optional) – Row-major (C-style) or column-major (Fortran-style) order.
- pwtools.atomic_data.T¶
Transpose of the array.
- Type:
ndarray
- pwtools.atomic_data.data¶
The array’s elements, in memory.
- Type:
buffer
- pwtools.atomic_data.dtype¶
Describes the format of the elements in the array.
- Type:
dtype object
- pwtools.atomic_data.flags¶
Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’, ‘OWNDATA’, ‘WRITEABLE’, etc.
- Type:
dict
- pwtools.atomic_data.flat¶
Flattened version of the array as an iterator. The iterator allows assignments, e.g.,
x.flat = 3(See ndarray.flat for assignment examples; TODO).- Type:
numpy.flatiter object
- pwtools.atomic_data.imag¶
Imaginary part of the array.
- Type:
ndarray
- pwtools.atomic_data.real¶
Real part of the array.
- Type:
ndarray
- pwtools.atomic_data.size¶
Number of elements in the array.
- Type:
int
- pwtools.atomic_data.itemsize¶
The memory use of each array element in bytes.
- Type:
int
- pwtools.atomic_data.nbytes¶
The total number of bytes required to store the array data, i.e.,
itemsize * size.- Type:
int
- pwtools.atomic_data.ndim¶
The array’s number of dimensions.
- Type:
int
- pwtools.atomic_data.shape¶
Shape of the array.
- Type:
tuple of ints
- pwtools.atomic_data.strides¶
The step-size required to move from one element to the next in memory. For example, a contiguous
(3, 4)array of typeint16in C-order has strides(8, 2). This implies that to move from element to element in memory requires jumps of 2 bytes. To move from row-to-row, one needs to jump 8 bytes at a time (2 * 4).- Type:
tuple of ints
- pwtools.atomic_data.ctypes¶
Class containing properties of the array needed for interaction with ctypes.
- Type:
ctypes object
- pwtools.atomic_data.base¶
If the array is a view into another array, that array is its base (unless that array is also a view). The base array is where the array data is actually stored.
- Type:
ndarray
See also
arrayConstruct an array.
zerosCreate an array, each element of which is zero.
emptyCreate an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).
dtypeCreate a data-type.
numpy.typing.NDArrayAn ndarray alias generic w.r.t. its dtype.type <numpy.dtype.type>.
Notes
There are two modes of creating an array using
__new__:If buffer is None, then only shape, dtype, and order are used.
If buffer is an object exposing the buffer interface, then all keywords are interpreted.
No
__init__method is needed because the array is fully initialized after the__new__method.Examples
These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways of constructing an ndarray.
First mode, buffer is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F') array([[0.0e+000, 0.0e+000], # random [ nan, 2.5e-323]])
Second mode:
>>> np.ndarray((2,), buffer=np.array([1,2,3]), ... offset=np.int_().itemsize, ... dtype=int) # offset = 1*itemsize, i.e. skip first element array([2, 3])