Quasi-harmonic approximation

See HarmonicThermo + test/test_qha.py, Gibbs + test/test_gibbs.py.

The distinctive feature of the pwtools implementation is that in Gibbs, we treat unit cell axes instead of just the volume, allowing to calculate per-axis thermal expansion rates. See for instance Schmerler and Kortus, Phys. Rev. B 89, 064109.

When only one unit cell parameter is scaled (e.g. a in case of cubic cells), we call this the “1d” case. If two unit cell axes are scaled independently on a 2d grid (say a and c in a hexagonal setting), this is called “2d” case. Varying a, b and c on a 3d grid, called “3d” case, is partially supported but has not been used in practice.

The case where you only have a series of volumes (say from variable cell relaxations at different pressures) is called “fake 1d” case. See below for more.

1d

See test_gibbs.py::test_gibbs_1d (using generated data).

Example results from Gibbs for rocksalt AlN from the paper above (vary cell parameter a = ax0 of the primitive cell, so 1d case). Gibbs returns a dictionary with keys named as below (such as /#opt/P/ax0). The naming scheme is explained in Gibbs. Below is the result of inspecting an HDF5 file written by

# See /path/to/pwtools/src/pwtools/test/utils/gibbs_test_data.py
gibbs = Gibbs(...)
g = gibbs.calc_G(calc_all=True)
pwtools.io.write_h5("thermo.h5", g)

which we can query for array shapes like so:

$ h5ls -rl thermo.h5 | grep Dataset
/#opt/P/B                Dataset {21}
/#opt/P/H                Dataset {21}
/#opt/P/V                Dataset {21}
/#opt/P/ax0              Dataset {21}
/#opt/T/P/B              Dataset {200, 21}
/#opt/T/P/Cp             Dataset {200, 21}
/#opt/T/P/G              Dataset {200, 21}
/#opt/T/P/V              Dataset {200, 21}
/#opt/T/P/alpha_V        Dataset {200, 21}
/#opt/T/P/alpha_ax0      Dataset {200, 21}
/#opt/T/P/ax0            Dataset {200, 21}
/P/P                     Dataset {21}
/P/ax0/H                 Dataset {21, 51}
/T/P/ax0/G               Dataset {200, 21, 51}
/T/T                     Dataset {200}
/ax0/Etot                Dataset {51}
/ax0/T/Cv                Dataset {51, 200}
/ax0/T/Evib              Dataset {51, 200}
/ax0/T/F                 Dataset {51, 200}
/ax0/T/Fvib              Dataset {51, 200}
/ax0/T/Svib              Dataset {51, 200}
/ax0/V                   Dataset {51}
/ax0/ax0                 Dataset {51, 1}
  • The (T,P) grid /T/P is of size (200,21)

    • 200 T points /T/T

    • 21 pressure values /P/P

This is the grid you define manually via Gibbs(T=..., P=...).

  • 51 cell parameter points /ax0/ax0 and thus 51 volumes (/ax0/V, V=volfunc_ax([ax0])

Further, we have

  • 51 \(C_V\) curves (/ax0/T/Cv), one per volume, 200 T grid points each

  • same for F, Fvib, etc

  • Gibbs energy \(\mathcal G(V,T,P)\) = \(\mathcal G(\texttt{ax0}, T, P)\): /T/P/ax0/G

  • minimized Gibbs energy \(\min_V \mathcal G(V,T,P) = G(T,P)\): /#opt/T/P/G on T,P grid (200x21)

  • 21 \(C_P(T)\) curves (200 T points): /#opt/T/P/Cp, where for each P, \(C_P(T) = -T (∂^2 G(T,P) / ∂T^2)_P\)

  • /#opt/P/{B,H,V}: results from \(\min_V H = \min_V(E+PV)\) without phonon contributions, at \(T=0\)

2d

See test_gibbs.py::test_gibbs_2d (using generated data).

2d case (hexagonal wurtzite AlN from the paper above, vary cell axis a = ax0 and c = ax1):

$ h5ls -rl thermo.h5 | grep Dataset
/#opt/P/H                Dataset {21}
/#opt/P/V                Dataset {21}
/#opt/P/ax0              Dataset {21}
/#opt/P/ax1              Dataset {21}
/#opt/T/P/Cp             Dataset {200, 21}
/#opt/T/P/G              Dataset {200, 21}
/#opt/T/P/V              Dataset {200, 21}
/#opt/T/P/alpha_V        Dataset {200, 21}
/#opt/T/P/alpha_ax0      Dataset {200, 21}
/#opt/T/P/alpha_ax1      Dataset {200, 21}
/#opt/T/P/ax0            Dataset {200, 21}
/#opt/T/P/ax1            Dataset {200, 21}
/P/P                     Dataset {21}
/P/ax0-ax1/H             Dataset {21, 263}
/T/P/ax0-ax1/G           Dataset {200, 21, 263}
/T/T                     Dataset {200}
/ax0-ax1/Etot            Dataset {263}
/ax0-ax1/T/Cv            Dataset {263, 200}
/ax0-ax1/T/Evib          Dataset {263, 200}
/ax0-ax1/T/F             Dataset {263, 200}
/ax0-ax1/T/Fvib          Dataset {263, 200}
/ax0-ax1/T/Svib          Dataset {263, 200}
/ax0-ax1/V               Dataset {263}
/ax0-ax1/ax0-ax1         Dataset {263, 2}
  • The (T,P) grid /T/P is of size (200,21)

    • 200 T points /T/T

    • 21 pressure values /P/P

  • The 2d (a,c) grid /ax0-ax1/ax0-ax1 has 263 points (of successful Phonon calculations), represented as an array of shape (263,2).

  • At each (T,P) point, the Gibbs energy will be fitted by fitfunc["2d-G"] as G(a,c), producing /#opt/T/P/G of shape (200,21) .. same shape as the /T/P grid.

Here we see the individual axis expansion rates \(\alpha_a\) = /#opt/T/P/alpha_ax0 and \(\alpha_c\) = /#opt/T/P/alpha_ax1 in addition to \(\alpha_V\) = /#opt/T/P/alpha_V.

“Fake” 1d a.k.a. usual QHA with varying volume

See test_gibbs.py::test_gibbs_3d_fake_1d (using generated data). The HDF5 data below is from that test.

$ h5ls -rl thermo.h5 | grep Dataset
/#opt/P/B                Dataset {2}
/#opt/P/H                Dataset {2}
/#opt/P/V                Dataset {2}
/#opt/P/ax0              Dataset {2}
/#opt/P/ax1              Dataset {2}
/#opt/P/ax2              Dataset {2}
/#opt/T/P/B              Dataset {50, 2}
/#opt/T/P/Cp             Dataset {50, 2}
/#opt/T/P/G              Dataset {50, 2}
/#opt/T/P/V              Dataset {50, 2}
/#opt/T/P/alpha_V        Dataset {50, 2}
/#opt/T/P/alpha_ax0      Dataset {50, 2}
/#opt/T/P/alpha_ax1      Dataset {50, 2}
/#opt/T/P/alpha_ax2      Dataset {50, 2}
/#opt/T/P/ax0            Dataset {50, 2}
/#opt/T/P/ax1            Dataset {50, 2}
/#opt/T/P/ax2            Dataset {50, 2}
/P/P                     Dataset {2}
/P/ax0-ax1-ax2/H         Dataset {2, 6}
/T/P/ax0-ax1-ax2/G       Dataset {50, 2, 6}
/T/T                     Dataset {50}
/ax0-ax1-ax2/Etot        Dataset {6}
/ax0-ax1-ax2/T/Cv        Dataset {6, 50}
/ax0-ax1-ax2/T/Evib      Dataset {6, 50}
/ax0-ax1-ax2/T/F         Dataset {6, 50}
/ax0-ax1-ax2/T/Fvib      Dataset {6, 50}
/ax0-ax1-ax2/T/Svib      Dataset {6, 50}
/ax0-ax1-ax2/V           Dataset {6}
/ax0-ax1-ax2/ax0-ax1-ax2 Dataset {6, 3}

Here we have only 2 pressure values (/P/P), 50 T steps /T/T, 6 axis points /ax0-ax1-ax2/ax0-ax1-ax2 where we change all 3 axes at once in each step, therefore we also have 6 volumes (/ax0-ax1-ax2/V).

How to supply simple 1d volumes:

tl;dr Use a (N,2) or (N,3) shaped axes_flat but set case="1d".

This is what most other QHA tools do by default. In the general triclinic case (or more symmetric such as hexagonal), you can always do a variable cell relaxation (QE: “vc-relax”) for several target pressures and generate structures that way. Then provide axes_flat as shape (N, 2) or (N, 3) data (the latter is the most generic and always works, independently of the actual symmetry). For instance use read_pw_scf(), read_cif() or read_pickle() to access cell parameters. Calculate the volume with volume_cc().

def volfunc_ax(x):
    """General triclinic case.

        axes_flat.shape = (N,3)
        x = axes_flat[i,...]
        x.shape = (3,)
    """
    assert len(x) == 3
    return pwtools.crys.volume_cc([x[0], x[1], x[2], alpha, beta, gamma])

axes_flat = []
for idx in range(n_volumes):
    # written by pwtools.crys.Structure.dump()
    st = pwtools.io.read_pickle(f"/path/to/calc/{idx}/struct.pk")
    axes_flat.append(st.cryst_const[:3])
axes_flat = np.array(axes_flat)

gibbs = Gibbs(..., case="1d")
g = gibbs.calc_G(calc_all=True)

# Cp(T) for all P
plot(g["/T/T"], g["/#opt/T/P/Cp"])

Set Gibbs(..., case="1d"). This will calculate V[i] = volfunc_ax[axes_flat[i,...]] and do a 1D fit G(V). You still need to supply volfunc_ax, but this is straight forward as shown above for the most general triclinic case. You have to know the cell angles and that’s it (we always assume that all cell angles are constant during compression and expansion).

Other ways to access cell parameters:

# Written by pwtools.io.write_cif()
st = pwtools.io.read_cif(f"/path/to/calc/{idx}/struct.cif")

# Lattice params in pw.out files are not very accurate, better
# store generated structures in another file format and read from
# there. But anyway this is handy to access total energy, stress tensor and
# other DFT results.
st = pwtools.io.read_pw_scf(f"/path/to/calc/{idx}/pw.out")

# Anything that ASE can read. See https://wiki.fysik.dtu.dk/ase/ase/io/io.html
st = pwtools.crys.atoms2struct(ase.io.read(...))

For generating structures and post-processing calculations beyond simple loops, see Parameter studies with batch or a more modern version of that in psweep.

Other tools