rbf.core

Radial Basis Function regression. See Radial Basis Function interpolation an regression for details.

JAX_MODE

bool(x) -> bool

Rbf(points, values[, rbf, r, p, fit])

Radial basis function network interpolation and regression.

_np_distsq(aa, bb)

(Slow) pure numpy squared distance matrix.

estimate_p(points[, method])

Estimate \(p\).

euclidean_dists(aa, bb)

jit(func, *args, **kwds)

rbf_dct

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2).

rbf_gauss(rsq, p)

Gaussian RBF \(\exp\left(-\frac{r^2}{2\,p^2}\right)\)

rbf_inv_multi(rsq, p)

Inverse Multiquadric RBF \(\frac{1}{\sqrt{r^2 + p^2}}\)

rbf_multi(rsq, p)

Multiquadric RBF \(\sqrt{r^2 + p^2}\)

squared_dists(aa, bb)